目前電子器材用于各類電子設備和系統仍然以印制電路板為主要裝配方式。實踐證明,即使電路原理圖設計正確,印制電路板設計不當,也會對電子設備的可靠性產生不利影響。例如,如果印制板兩條細并行線靠得很近,則會形成信號波形的延遲,在傳輸線的終端形成反射噪聲。因此,在設計印制電路板的時候,應注意采用正確的方法。
一、 地線設計
在電子設備中,接地是控制干擾的重要方法。如能將接地和屏蔽正確結合起來使用,可解決大部分干擾問題。電子設備中地線結構大致有系統地、機殼地(屏蔽地)、數字地(邏輯地)和仿真地等。在地線設計中應注意以下幾點:
1. 正確選擇單點接地與多點接地
低頻電路中,信號的工作頻率小于1MHz,它的布線和器件間的電感影響較小,而接地電路形成的環流對干擾影響較大,因而應采用一點接地。當信號工作頻率大于10MHz時,地線阻抗變得很大,此時應盡量降低地線阻抗,應采用就近多點接地。當工作頻率在1~10MHz時,如果采用一點接地,其地線長度不應超過波長的1/20,否則應采用多點接地法。
2. 將數字電路與仿真電路分開
電路板上既有高速邏輯電路,又有線性電路,應使它們盡量分開,而兩者的地線不要相混,分別與電源端地線相連。要盡量加大線性電路的接地面積。 3. 盡量加粗接地線
若接地線很細,接地電位則隨電流的變化而變化,致使電子設備的定時信號電平不穩,抗噪聲性能變壞。因此應將接地線盡量加粗,使它能通過三位于印制電路板的允許電流。如有可能,接地線的寬度應大于3mm。
4. 將接地線構成死循環路
設計只由數字電路組成的印制電路板的地線系統時,將接地線做成死循環路可以明顯的提高抗噪聲能力。其原因在于:印制電路板上有很多集成電路組件,尤其遇有耗電多的組件時,因受接地線粗細的限制,會在地結上產生較大的電位差,引起抗噪聲能力下降,若將接地結構成環路,則會縮小電位差值,提高電子設備的抗噪聲能力。 二、電磁兼容性設計
電磁兼容性是指電子設備在各種電磁環境中仍能夠協調、有效地進行工作的能力。電磁兼容性設計的目的是使電子設備既能抑制各種外來的干擾,使電子設備在特定的電磁環境中能夠正常工作,同時又能減少電子設備本身對其它電子設備的電磁干擾。
1. 選擇合理的導線寬度由于瞬變電流在印制線條上所產生的沖擊干擾主要是由印制導線的電感成分造成的,因此應盡量減小印制導線的電感量。印制導線的電感量與其長度成正比,與其寬度成反比,因而短而精的導線對抑制干擾是有利的。時鐘引線、行驅動器或總線驅動器的信號線常常載有大的瞬變電流,印制導線要盡可能地短。對于分立組件電路,印制導線寬度在1.5mm左右時,即可完全滿足要求;對于集成電路,印制導線寬度可在0.2~1.0mm之間選擇。
2. 采用正確的布線策略采用平等走線可以減少導線電感,但導線之間的互感和分布電容增加,如果布局允許,最好采用井字形網狀布線結構,具體做法是印制板的一面橫向布線,另一面縱向布線,然后在交叉孔處用金屬化孔相連。 為了抑制印制板導線之間的串擾,在設計布線時應盡量避免長距離的平等走線,盡可能拉開線與線之間的距離,信號線與地線及電源線盡可能不交叉。在一些對干擾十分敏感的信號線之間設置一根接地的印制線,可以有效地抑制串擾。 為了避免高頻信號通過印制導線時產生的電磁輻射,在印制電路板布線時,還應注意以下幾點:
盡量減少印制導線的不連續性,例如導線寬度不要突變,導線的拐角應大于90度禁止環狀走線等。
時鐘信號引線最容易產生電磁輻射干擾,走線時應與地線回路相靠近,驅動器應緊挨著連接器。
總線驅動器應緊挨其欲驅動的總線。對于那些離開印制電路板的引線,驅動器應緊緊挨著連接器。
數據總線的布線應每兩根信號線之間夾一根信號地線。最好是緊緊挨著最不重要的地址引線放置地回路,因為后者常載有高頻電流。
在印制板布置高速、中速和低速邏輯電路時,應按照圖1的方式排列器件。
3.抑制反射干擾為了抑制出現在印制線條終端的反射干擾,除了特殊需要之外,應盡可能縮短印制線的長度和采用慢速電路。必要時可加終端匹配,即在傳輸線的末端對地和電源端各加接一個相同阻值的匹配電阻。根據經驗,對一般速度較快的TTL電路,其印制線條長于10cm以上時就應采用終端匹配措施。匹配電阻的阻值應根據集成電路的輸出驅動電流及吸收電流的最大值來決定。
-------------------------------------------------------------------------------------------------------------------------------
目前電子器材用于各類電子設備和系統仍然以印制電路板為主要裝配方式。實踐證明,即使電路原理圖設計正確,印制電路板設計不當,也會對電子設備的可靠性產生不利影響。例如,如果印制板兩條細并行線靠得很近,則會形成信號波形的延遲,在傳輸線的終端形成反射噪聲。因此,在設計印制電路板的時候,應注意采用正確的方法。
3. 盡量加粗接地線
若接地線很細,接地電位則隨電流的變化而變化,致使電子設備的定時信號電平不穩,抗噪聲性能變壞。因此應將接地線盡量加粗,使它能通過三位于印制電路板的允許電流。如有可能,接地線的寬度應大于3mm。
4. 將接地線構成死循環路
設計只由數字電路組成的印制電路板的地線系統時,將接地線做成死循環路可以明顯的提高抗噪聲能力。其原因在于:印制電路板上有很多集成電路組件,尤其遇有耗電多的組件時,因受接地線粗細的限制,會在地結上產生較大的電位差,引起抗噪聲能力下降,若將接地結構成環路,則會縮小電位差值,提高電子設備的抗噪聲能力。
二、電磁兼容性設計
電磁兼容性是指電子設備在各種電磁環境中仍能夠協調、有效地進行工作的能力。電磁兼容性設計的目的是使電子設備既能抑制各種外來的干擾,使電子設備在特定的電磁環境中能夠正常工作,同時又能減少電子設備本身對其它電子設備的電磁干擾。
1. 選擇合理的導線寬度
由于瞬變電流在印制線條上所產生的沖擊干擾主要是由印制導線的電感成分造成的,因此應盡量減小印制導線的電感量。印制導線的電感量與其長度成正比,與其寬度成反比,因而短而精的導線對抑制干擾是有利的。時鐘引線、行驅動器或總線驅動器的信號線常常載有大的瞬變電流,印制導線要盡可能地短。對于分立組件電路,印制導線寬度在1.5mm左右時,即可完全滿足要求;對于集成電路,印制導線寬度可在0.2~1.0mm之間選擇。
2. 采用正確的布線策略
采用平等走線可以減少導線電感,但導線之間的互感和分布電容增加,如果布局允許,最好采用井字形網狀布線結構,具體做法是印制板的一面橫向布線,另一面縱向布線,然后在交叉孔處用金屬化孔相連。 為了抑制印制板導線之間的串擾,在設計布線時應盡量避免長距離的平等走線,盡可能拉開線與線之間的距離,信號線與地線及電源線盡可能不交叉。在一些對干擾十分敏感的信號線之間設置一根接地的印制線,可以有效地抑制串擾
3.抑制反射干擾
為了抑制出現在印制線條終端的反射干擾,除了特殊需要之外,應盡可能縮短印制線的長度和采用慢速電路。必要時可加終端匹配,即在傳輸線的末端對地和電源端各加接一個相同阻值的匹配電阻。根據經驗,對一般速度較快的TTL電路,其印制線條長于10cm以上時就應采用終端匹配措施。匹配電阻的阻值應根據集成電路的輸出驅動電流及吸收電流的最大值來決定。
印制電路板的可靠性設計(二)
一、去耦電容配置
在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流,形成瞬變的噪聲電壓。配置去耦電容可以抑制因負載變化而產生的噪聲,是印制電路板的可靠性設計的一種常規做法,配置原則如下︰ 電源輸入端跨接一個 10 ~ 100uF 的電解電容器,如果印制電路板的位置允許,采用 100uF 以上的電解電容器的抗干擾效果會更好。 為每個集成電路芯片配置一個 0.01uF 的陶瓷電容器。如遇到印制電路板空間小而裝不下時,可每 4 ~ 10 個芯片配置一個 1 ~ 10uF 鉭電解電容器,這種器件的高頻阻抗特別小,在 500kHz ~ 20MHz 范圍內阻抗小于 1 Ω,而且漏電流很。 0.5uA 以下)。 對于噪聲能力弱、關斷時電流變化大的器件和 ROM 、 RAM 等存儲型器件,應在芯片的電源線( Vcc )和地線( GND )間直接接入去耦電容。 去耦電容的引線不能過長,特別是高頻旁路電容不能帶引線
二、印制電路板的尺寸與器件的布置
印制電路板大小要適中,過大時印制線條長,阻抗增加,不僅抗噪聲能力下降,成本也高;過小,則散熱不好,同時易受臨近線條干擾。 在器件布置方面與其它邏輯電路一樣,應把相互有關的器件盡量放得靠近些,這樣可以獲得較好的抗噪聲效果。如圖 2 所示。時種發生器、晶振和 CPU 的時鐘輸入端都易產生噪聲,要相互靠近些。易產生噪聲的器件、小電流電路、大電流電路等應盡量遠離邏輯電路,如有可能,應另做電路板,這一點十分重要
三、熱設計
從有利于散熱的角度出發,印制版最好是直立安裝,板與板之間的距離一般不應小于 2cm ,而且器件在印制版上的排列方式應遵循一定的規則︰ 對于采用自由對流空氣冷卻的設備,最好是將集成電路(或其它器件)按縱長方式排列,如圖 3 示;對于采用強制空氣冷卻的設備,最好是將集成電路(或其它器件)按橫長方式排列。 同一塊印制板上的器件應盡可能按其發熱量大小及散熱程度分區排列,發熱量小或耐熱性差的器件(如小信號晶體管、小規模集成電路、電解電容等)放在冷卻氣流的最上流(入口處),發熱量大或耐熱性好的器件(如功率晶體管、大規模集成電路等)放在冷卻氣流最下游。 在水平方向上,大功率器件盡量靠近印制板邊沿布置,以便縮短傳熱路徑;在垂直方向上,大功率器件盡量靠近印制板上方布置,以便減少這些器件工作時對其它器件溫度的影響。 對溫度比較敏感的器件最好安置在溫度最低的區域(如設備的底部),千萬不要將它放在發熱器件的正上方,多個器件最好是在水平面上交錯布局。 設備內印制板的散熱主要依靠空氣流動,所以在設計時要研究空氣流動路徑,合理配置器件或印制電路板?諝饬鲃訒r總是趨向于阻力小的地方流動,所以在印制電路板上配置器件時,要避免在某個區域留有較大的空域。整機中多塊印制電路板的配置也應注意同樣的問題。 大量實踐經驗表明,采用合理的器件排列方式,可以有效地降低印制電路的溫升,從而使器件及設備的故障率明顯下降。
四、產品騷擾的抑制方案
1 接地 1.1 設備的信號接地 目的︰為設備中的任何信號提供一個公共的參考電位。 方式︰設備的信號接地系統可以是一塊金屬板。 1.2 基本的信號接地方式 有三種基本的信號接地方式︰浮地、單點接地、多點接地。 1.2.1 浮地 目的︰使電路或設備與公共地線可能引起環流的公共導線隔離起來,浮地還使不同電位的電路之間配合變得容易。 缺點︰容易出現靜電積累引起強烈的靜電放電。 折衷方案︰接入泄放電阻。 1.2.2 單點接地 方式︰線路中只有一個物理點被定義為接地參考點,凡需要接地均接于此。 缺點︰不適宜用于高頻場合。 1.2.3 多點接地 方式︰凡需要接地的點都直接連到距它最近的接地平面上,以便使接地線長度為最短。 缺點︰維護較麻煩。 1.2.4 混合接地 按需要選用單點及多點接地。 1.3 信號接地線的處理(搭接) 搭接是在兩個金屬點之間建立低阻抗的通路。 分直接搭接、間接搭接方式。 無論哪一種搭接方式,最重要的是強調搭接良好。 1.4 設備的接地(接大地) 設備與大地連在一起,以大地為參考點,目的︰ 實現設備的安全接地 泄放機箱上所積累的電荷,避免設備內部放電。 接高設備工作的穩定性,避免設備對大地的電位在外界電磁環境作用下發生的變化。 1.5 拉大地的方法和接地電阻 接地棒。 1.6 電氣設備的接地 例 2 屏蔽 2.1 電場屏蔽 2.1.1 電場屏蔽的機理 分布電容間的耦合 處理方法︰ 增大 A 、 B 距離。 B 盡量貼近接地板。 A 、 B 間插入金屬屏蔽板。 2.1.2 電場屏蔽設計重點︰ 屏蔽板程控受保護物;屏蔽板接地必須良好。 注意屏蔽板的形狀。 屏蔽板以良好導體為好,厚度無要求,強度要足夠。 2.2 磁場屏蔽 2.2.1 磁場屏蔽的機理 高導磁材料的低磁阻起磁分路作用,使屏蔽體內的磁場大大降低。 2.2.2 磁場屏蔽設計重點 1 ) 選用高導磁率材料。 2 ) 增加屏蔽體的壁厚。 3 ) 被屏蔽物不要緊靠屏蔽體。 4 ) 注意結構設計。 5 ) 對強用雙層磁屏蔽體。 2.3 電磁場屏蔽的機理 1 ) 表面的反射! 2 ) 屏蔽體內部的吸收。 2.3.2 材料對電磁屏蔽的效果 2.4 實際的電磁屏蔽體
五、產品內部的電磁兼容性設計
1 印刷電路板設計中的電磁兼容性 印刷線路板中的公共阻抗耦合問題 數字地與仿真地分開,地線加寬。 印刷線路板的布局 ※對高速、中速和低速混用時,注意不同的布局區域。 ※對低仿真電路和數字邏輯要分離。 1.3 印刷線路板的布線(單面或雙面板) ※專用零伏線,電源線的走線寬度≧ 1mm 。 ※電源線和地線盡可能靠近,整塊印刷板上的電源與地要呈“井”字形分布,以便使分布線電流達到均衡。 ※要為仿真電路專門提供一根零伏線。 ※為減少線間串擾,必要時可增加印刷線條間距離,在意安插一些零伏線作為線間隔離。 ※印刷電路的插頭也要多安排一些零伏線作為線間隔離。 ※特別注意電流流通中的導線環路尺寸。 ※如有可能在控制線(于印刷板上)的入口處加接 R-C 去耦,以便消除傳輸中可能出現的干擾因素。 ※印刷弧上的線寬不要突變,導線不要突然拐角 ( ≧ 90 度 ) 。 1.4 對在印刷線路板上使用邏輯電路有益建議 ※凡能不用高速邏輯電路的就不用。 ※在電源與地之間加去耦電容。 ※注意長線傳輸中的波形畸變。 ※用 R-S 觸發的作按鈕與電子線路之間配合的緩沖。 1.4.1 邏輯電路工作時,所引入的電源線干擾及抑制方法 1.4.2 邏輯電路輸出波形傳輸中的畸變問題 1.4.3 按鈕操作與電子線路工作的配合問題 1.5 印刷線路板的互連 主要是線間串擾,影響因素︰ ※直角走線 ※屏蔽線 ※阻抗匹配 ※長線驅動 2 開關電源設計中的電磁兼容性 2.1 開關電源對電網傳導的騷擾與抑制 騷擾來源︰ 非線性流。 初級電路中功率晶體管外殼與散熱器之間的容光煥發性耦合在電源輸入端產生的傳導共模噪聲。 抑制方法︰ 對開關電壓波形進行“修整”。 在晶體管與散熱器之間加裝帶屏蔽層的絕緣墊片。 在市電輸入電路中加接電源濾波器。 2.2 開關電源的輻射騷擾與抑制 注意輻射騷擾與抑制 抑制方法︰ 盡可能地減小環路面積。 印刷線路板上正負載流導體的布局。 在次線整流回路中使用軟恢復二極管或在二極管上并聯聚酯薄膜電容器。 對晶體管開關波形進行“修整”。 2.3 輸出噪聲的減小 原因是二極管反向電流陡變及回路分布電感。二極管結電容等形成高頻衰減振蕩,而濾波電容的等效串聯電感又削弱了濾波的作用,因此在輸出改波中出現尖峰干擾解決辦法是加小電感和高頻電容。 3 設備內部的布線 3.1 線間電磁耦合現象及抑制方法 對磁場耦合︰ 減小干擾和敏感電路的環路面積最好辦法是使用雙絞線和屏蔽線。 增大線間距離(使互感減。。 盡可有使干擾源線路與受感應線路呈直角布線。 對電容耦合︰ 增大線間距離。 屏蔽層接地。 降低敏感線路的輸入阻抗。 如有可能在敏感電路采用平衡線路作輸入,利用平衡線路固有的共模抑制能力克服干擾源對敏感線路的干擾。 3.2 一般的布線方法︰ 按功率分類,不同分類的導線應分別捆扎,分開敷設的線束間距離應為 50 ~ 75mm 。 4 屏蔽電纜的接地 4.1 常用的電纜 ※雙絞線在低于 100KHz 下使用非常有效,高頻下因特性阻抗不均勻及由此造成的波形反射而受到限制。 ※帶屏蔽的雙絞線,信號電流在兩根內導線上流動,噪聲電流在屏蔽層里流動,因此消除了公共阻抗的耦合,而任何干擾將同時感應到兩根導線上,使噪聲相消。 ※非屏蔽雙絞線抵御靜電耦合的能力差些。但對防止磁場感應仍有很好作用。非屏蔽雙絞線的屏蔽效果與單位長度的導線扭絞次數成正比。 ※同軸電纜有較均勻的特性阻抗和較低的損耗,使從真流到甚高頻都有較好特性。 ※無屏蔽的帶狀電纜。 最好的接線方式是信號與地線相間,稍次的方法是一根地、兩根信號再一根地依次類推,或專用一塊接地平板。 4.2 電纜線屏蔽層的接地 總之,將負載直接接地的方式是不合適的,這是因為兩端接地的屏蔽層為磁感應的地環路電流提供了分流,使得磁場屏蔽性能下降。 4.3 電纜線的端接方法 在要求高的場合要為內導體提供 360 °的完整包裹,并用同軸接頭來保證電場屏蔽的完整性。 5 對靜電的防護 靜電放電可通過直接傳導,電容耦合和電感耦合三種方式進入電子線路。 直接對電路的靜電放電經常會引起電路的損壞,對鄰近物體的放電通過電容或電感耦合,會影響到電路工作的穩定性。 防護方法︰ 建立完善的屏蔽結構,帶有接地的金屬屏蔽殼體可將放電電流釋放到地。 金屬外殼接地可限制外殼電位的升高,造成內部電路與外殼之間的放電。 內部電路如果要與金屬外殼相連時,要用單點接地,防止放電電流流過內部電路。 在電纜入口處增加保護器件。 在印刷板入口處增加保護環(環與接地端相連)。 6 設備內部開關接點的處理 6.1 開關斷開過程中瞬變干擾形成 6.2 干擾的抑制措施 6.2.1 對被切換電感負載的處理 6.2.2 對開關觸點的處理
印制電路板的可靠性設計(三)
3 、 降低噪聲與電磁干擾的一些經驗。
能用低速芯片就不用高速的,高速芯片用在關鍵地方。 可用串一個電阻的辦法,降低控制電路上下沿跳變速率。 盡量為繼電器等提供某種形式的阻尼。 使用滿足系統要求的最低頻率時鐘。 時鐘產生器盡量靠近到用該時鐘的器件。石英晶體振蕩器外殼要接地 用地線將時鐘區圈起來,時鐘線盡量短。 I/O 驅動電路盡量靠近印刷板邊,讓其盡快離開印刷板。對進入印制板的信號要加濾波,從高噪聲區來的信號也要加濾波,同時用串終端電阻的辦法,減小信號反射。 MCD 無用端要接高,或接地,或定義成輸出端,集成電路上該接電源地的端都要接,不要懸空。 閑置不用的門電路輸入端不要懸空,閑置不用的運放正輸入端接地,負輸入端接輸出端。 印制板盡量使用 45 折線而不用 90 折線布線以減小高頻信號對外的發射與耦合。 印制板按頻率和電流開關特性分區,噪聲組件與非噪聲組件要距離再遠一些。 單面板和雙面板用單點接電源和單點接地、電源線、地線盡量粗,經濟是能承受的話用多層板以減小電源,地的容生電感。 時鐘、總線、片選信號要遠離 I/O 線和接插件。 仿真電壓輸入線、參考電壓端要盡量遠離數字電路信號線,特別是時鐘。 對 A/D 類器件,數字部分與仿真部分寧可統一下也不要交叉。 時鐘線垂直于 I/O 線比平行 I/O 線干擾小,時鐘組件引腳遠離 I/O 電纜。 組件引腳盡量短,去耦電容引腳盡量短。 關鍵的線要盡量粗,并在兩邊加上保護地。高速線要短要直。 對噪聲敏感的線不要與大電流,高速開關線平行。 石英晶體下面以及對噪聲敏感的器件下面不要走線。 弱信號電路,低頻電路周圍不要形成電流環路。 任何信號都不要形成環路,如不可避免,讓環路區盡量小。 每個集成電路一個去耦電容。每個電解電容邊上都要加一個小的高頻旁路電容。 用大容量的鉭電容或聚酷電容而不用電解電容作電路充放電儲能電容。使用管狀電容時,外殼要接地。